A generalization of Kolmogorov’s law of the iterated logarithm
نویسندگان
چکیده
منابع مشابه
On the law of the iterated logarithm.
The law of the iterated logarithm provides a family of bounds all of the same order such that with probability one only finitely many partial sums of a sequence of independent and identically distributed random variables exceed some members of the family, while for others infinitely many do so. In the former case, the total number of such excesses has therefore a proper probability distribution...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
A Law of the Iterated Logarithm for General Lacunary Series
This was first proved for Bernoulli random variables by Khintchine. Salem and Zygmund [SZ2] considered the case when the Xk are replaced by functions ak cosnkx on [−π, π] and gave an upper bound ( ≤ 1) result; this was extended to the full upper and lower bound by Erdös and Gál [EG]. Takahashi [T1] extends the result of Salem and Zygmund: Consider a real measurable function f satisfying f(x + 1...
متن کاملA Law of the Iterated Logarithm for Arithmetic Functions
Let X,X1, X2, . . . be a sequence of centered iid random variables. Let f(n) be a strongly additive arithmetic function such that ∑ p<n f2(p) p → ∞ and put An = ∑ p<n f(p) p . If EX2 < ∞ and f satisfies a Lindeberg-type condition, we prove the following law of the iterated logarithm: lim sup N→∞ ∑N n=1 f(n)Xn AN √ 2N log logN a.s. = ‖X‖2. We also prove the validity of the corresponding weighted...
متن کاملA law of the iterated logarithm for Grenander's estimator.
In this note we prove the following law of the iterated logarithm for the Grenander estimator of a monotone decreasing density: If f(t0) > 0, f'(t0) < 0, and f' is continuous in a neighborhood of t0, then [Formula: see text]almost surely where [Formula: see text]here [Formula: see text] is the two-sided Strassen limit set on [Formula: see text]. The proof relies on laws of the iterated logarith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1972
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1972-0292142-1